Content |
bbox_iou, bbox_giou, bbox_ciou 함수를 구현한 모듈
bbox_iou.py
----------------------------
def bbox_iou(boxes1, boxes2):
boxes1_area = boxes1[..., 2] * boxes1[..., 3]
boxes2_area = boxes2[..., 2] * boxes2[..., 3]
boxes1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
boxes2 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
left_up = tf.maximum(boxes1[..., :2], boxes2[..., :2])
right_down = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])
inter_section = tf.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
return 1.0 * inter_area / union_area
def bbox_giou(boxes1, boxes2):
boxes1 = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
boxes2 = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
boxes1 = tf.concat([tf.minimum(boxes1[..., :2], boxes1[..., 2:]),
tf.maximum(boxes1[..., :2], boxes1[..., 2:])], axis=-1)
boxes2 = tf.concat([tf.minimum(boxes2[..., :2], boxes2[..., 2:]),
tf.maximum(boxes2[..., :2], boxes2[..., 2:])], axis=-1)
boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])
left_up = tf.maximum(boxes1[..., :2], boxes2[..., :2])
right_down = tf.minimum(boxes1[..., 2:], boxes2[..., 2:])
inter_section = tf.maximum(right_down - left_up, 0.0)
inter_area = inter_section[..., 0] * inter_section[..., 1]
union_area = boxes1_area + boxes2_area - inter_area
iou = inter_area / union_area
enclose_left_up = tf.minimum(boxes1[..., :2], boxes2[..., :2])
enclose_right_down = tf.maximum(boxes1[..., 2:], boxes2[..., 2:])
enclose = tf.maximum(enclose_right_down - enclose_left_up, 0.0)
enclose_area = enclose[..., 0] * enclose[..., 1]
giou = iou - 1.0 * (enclose_area - union_area) / enclose_area
return giou
def bbox_ciou(boxes1, boxes2):
boxes1_coor = tf.concat([boxes1[..., :2] - boxes1[..., 2:] * 0.5,
boxes1[..., :2] + boxes1[..., 2:] * 0.5], axis=-1)
boxes2_coor = tf.concat([boxes2[..., :2] - boxes2[..., 2:] * 0.5,
boxes2[..., :2] + boxes2[..., 2:] * 0.5], axis=-1)
left = tf.maximum(boxes1_coor[..., 0], boxes2_coor[..., 0])
up = tf.maximum(boxes1_coor[..., 1], boxes2_coor[..., 1])
right = tf.maximum(boxes1_coor[..., 2], boxes2_coor[..., 2])
down = tf.maximum(boxes1_coor[..., 3], boxes2_coor[..., 3])
c = (right - left) * (right - left) + (up - down) * (up - down)
iou = bbox_iou(boxes1, boxes2)
u = (boxes1[..., 0] - boxes2[..., 0]) * (boxes1[..., 0] - boxes2[..., 0]) + (boxes1[..., 1] - boxes2[..., 1]) * (boxes1[..., 1] - boxes2[..., 1])
d = u / c
ar_gt = boxes2[..., 2] / boxes2[..., 3]
ar_pred = boxes1[..., 2] / boxes1[..., 3]
ar_loss = 4 / (np.pi * np.pi) * (tf.atan(ar_gt) - tf.atan(ar_pred)) * (tf.atan(ar_gt) - tf.atan(ar_pred))
alpha = ar_loss / (1 - iou + ar_loss + 0.000001)
ciou_term = d + alpha * ar_loss
return iou - ciou_term
|